Abstract

Abstract A statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters, and their unique characteristics were investigated. The predictive model uses multiple linear regressions, where the predictand or the dependent variable is the change in maximum wind speed relative to the initial time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling, new potential predictors were also developed for maximum potential intensity (MPI) and intensification potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Altogether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014, which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is comparable with the best operational models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.