Abstract

BackgroundAge-related macular degeneration (AMD) is a progressive retinal disease contributing to blindness worldwide. Multiple estimates for AMD heritability (h2) exist; however, a substantial proportion of h2 is not attributable to known genomic loci. The International AMD Genomics Consortium (IAMDGC) gathered the largest dataset of advanced AMD (ADV) cases and controls available and identified 34 loci containing 52 independent risk variants defining known AMD h2. To better define AMD heterogeneity, we used Pathway Analysis by Randomization Incorporating Structure (PARIS) on the IAMDGC data and identified 8 statistical driver genes (SDGs), including 2 novel SDGs not discovered by the IAMDGC. We chose to further investigate these pathway-based risk genes and determine their contribution to ADV h2, as well as the differential ADV subtype h2.MethodsWe performed genomic-relatedness-based restricted maximum-likelihood (GREML) analyses on ADV, geographic atrophy (GA), and choroidal neovascularization (CNV) subtypes to investigate the h2 of genotyped variants on the full DNA array chip, 34 risk loci (n = 2758 common variants), 52 variants from the IAMDGC 2016 GWAS, and the 8 SDGs, specifically the novel 2 SDGs, PPARA and PLCG2.ResultsVia GREML, full chip h2 was 44.05% for ADV, 46.37% for GA, and 62.03% for CNV. The lead 52 variants’ h2 (ADV: 14.52%, GA: 8.02%, CNV: 13.62%) and 34 loci h2 (ADV: 13.73%, GA: 8.81%, CNV: 12.89%) indicate that known variants contribute ~ 14% to ADV h2. SDG variants account for a small percentage of ADV, GA, and CNV heritability, but estimates based on the combination of SDGs and the 34 known loci are similar to those calculated for known loci alone. We identified modest epistatic interactions among variants in the 2 SDGs and the 52 IAMDGC variants, including modest interactions between variants in PPARA and PLCG2.ConclusionsPathway analyses, which leverage biological relationships among genes in a pathway, may be useful in identifying additional loci that contribute to the heritability of complex disorders in a non-additive manner. Heritability analyses of these loci, especially amongst disease subtypes, may provide clues to the importance of specific genes to the genetic architecture of AMD.

Highlights

  • Age-related macular degeneration (AMD) is a progressive retinal disease contributing to blindness worldwide

  • Of these eight Statistical driver gene (SDG), two genes (PLCG2 and PPARA) fell outside of the 34 AMD susceptibility loci identified by the International AMD Genomics Consortium (IAMDGC) Genome-wide association studies (GWAS) [8]; we showed that these loci may be associated with Advanced age-related macular degeneration (ADV) risk [14]

  • Study data for ADV, geographic atrophy (GA), and choroidal neovascularization (CNV) analyses We aimed to determine the proportion of ADV, GAspecific, and CNV-specific heritability explained by variants in and within 50 kilobasepairs of the SDGs identified by Pathway Analysis by Randomization Incorporating Structure (PARIS) (Tables 2 and 3)

Read more

Summary

Introduction

Age-related macular degeneration (AMD) is a progressive retinal disease contributing to blindness worldwide. Multiple estimates for AMD heritability (h2) exist; a substantial proportion of h2 is not attributable to known genomic loci. GWAS detect such associations by comparing allele frequencies in individuals with and without a trait of interest in a specific population [2]. These methods have been successfully applied to find large numbers of disease-associated variants that contribute to the trait’s heritability [3]. The topic of missing heritability has been discussed, especially regarding complex diseases, and may be attributable to non-additive effects of genomic variants that are not discernible from traditional GWAS [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.