Abstract
Abstract A statistical downscaling approach for extremes using censored quantile regression is presented. Conditional quantiles of station data (e.g., daily precipitation sums) in Germany are estimated by means of the large-scale circulation as represented by the NCEP reanalysis data. It is shown that a mixed discrete–continuous response variable, such as a daily precipitation sum, can be statistically modeled by a censored variable. Furthermore, a conditional quantile skill score is formulated to assess the relative gain of a quantile forecast compared with a reference forecast. Just like multiple regression for expectation values, quantile regression provides a tool to formulate a model output statistics system for extremal quantiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.