Abstract
Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.