Abstract

Fundamentals and applications of a 23 factorial design were performed for assessing the influence of the cyclodextrin (CyD) type, concentration and encapsulation time on the electrocatalytic hydrogenation (ECH) of isophorone. Electrolysis were carried out using nickel as electrocatalyst and sacrificial anode. A discussion of model validation is presented. The analysis of the results showed that the most significant factors to the conversion rate were the CyD type and concentration, with 3 mmol dm−3 of βCyD giving the best results. The isophorone C=C hydrogenation yield, in the presence of βCyD, was 28 % higher than in its absence, and it is comparable to those obtained by other well-established ECH procedures in terms of hydrogenation yield, selectivity and current efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.