Abstract

AbstractA complete understanding of the role of grain-scale particle-flow interaction in sediment entrainment and transport has still not been achieved in spite of recent technological advancement in measurement capabilities. In this study, the initial motion of natural sediment particles in a gravel deposit was detected and combined with simultaneous local measurements of the velocities on a horizontal plane located above the bed surface using a three-component stereoscopic PIV. A series of experimental tests with increasing low values of boundary shear stress were conducted. The acquisition system allowed coupling between streamwise and vertical near-bed velocity and the entrainment of more than 900 individual grains. Initial analysis agreed with previous observations on the predominance of sweeps (Quadrant IV), and to a lesser extent, of outward interactions (Quadrant I) in entraining gravel particles. However, the latter were found to move sediments just as efficiently as sweeps impacting on particles...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call