Abstract
A statistical correlation model for image retrieval is proposed. This model captures the semantic relationships among images in a database from simple statistics of user-provided relevance feedback information. It is applied in the post-processing of image retrieval results such that more semantically related images are returned to the user. The algorithm is easy to implement and can be efficiently integrated into an image retrieval system to help improve the retrieval performance. Preliminary experimental results on a database of 100,000 images show that the proposed model could improve image retrieval performance for both content- and text-based queries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.