Abstract

Aiming at the signal reconstruction problem for the conventional narrowband radar system, we propose a new statistical compressive sensing (SCS) method to achieve the reconstruction of superresolution time-frequency spectrum from the corrupted time-domain measurement. The proposed method assumes that the signal obeys complex Gaussian distribution and develops a hierarchical Bayesian model. Variational Bayesian expectation maximization (VBEM) is used to perform inference for the posterior distributions of the model parameters. In order to fully exploit the superresolution characteristics of reconstructed spectrum, a novel superresolution time-frequency feature vector is extracted for subsequent classification of ground moving targets, i.e., walking person and a moving wheeled vehicle. Experimental results on measured data show that the proposed reconstruction method can obtain good reconstruction results and the superresolution feature has good classification performance for human and vehicle targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.