Abstract

Cermet coatings such as WC-Co and Cr3C2-NiCr are frequently applied by means of thermal spray processes to protect highly stressed surfaces against wear. The investigation of the respective spray materials and their coating properties and in-flight particle properties are often carried out in separate experiments. In this study, the coating characteristics (hardness, deposition rate, porosity, thickness) and in-flight particle properties (particle velocity and temperature) of three different WC-based powders and a Cr3C2-NiCr powder processed by means of an HVOF process are investigated as a function of some key process parameters such as kerosene flow rate, lambda, spray distance and feeder disc velocity. These parameters were varied within a design of experiments, whilst all other parameters were fixed. Both the design of experiments plan and the settings of the fixed parameters were defined identically. The in-flight particle properties and coating characteristics are statistically modeled as a function of the process parameters and their influences are compared. A well-selected, limited number of experimental runs using statistical design of experiment (DoE) enable this comparison. The deployed statistical models are generalized linear models with Gamma-distributed responses. The models show that particle velocity and particle temperature mainly depend on kerosene flow rate and spray distance. However, in the case of particle temperature, the model coefficients for Cr3C2-NiCr and WC powders have different signs, reflecting different qualitative behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.