Abstract

In this work we study statistically the internal structure of noiselike pulses generated by a passively mode-locked fiber laser. For this purpose, we use a technique that allows estimating the distribution of the amplitudes of the sub-pulses in the bunch. The technique takes advantage of the fast response of the optical Kerr effect in a fiber nonlinear optical loop mirror (NOLM). It requires the measurement of the energy transfer characteristic of the pulses through the NOLM, and the numerical resolution of a system of nonlinear algebraic equations. The results yield a strongly asymmetric distribution, with a high-amplitude tail that is compatible with the existence of extreme-intensity sub-pulses in the bunch. Following the recent discovery of pulse-energy rogue waves and spectral rogue waves in the noiselike pulse regime, we propose a new way to look for extreme events in this particular mode of operation of mode-locked fiber lasers, and confirm that rogue wave generation is a key ingredient in the complex dynamics of these unconventional pulses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call