Abstract

In the article a numerical solution of the connected system of the equations of turbulent transfer for the fields of the velocity and concentration of a chemically active additive is used to calculate a number of the second moments of the concentration field in a flat mixing zone. The system of transfer equations is derived from the equations for a common function of the distribution of the fields of the pulsations of the velocity and the concentration [1] and is simplified in the approximation of the boundary layer. A closed form of the transfer equations is obtained on the level of three moments, using the hypothesis of four moments [2] and its generalized form for mixed moments of the field of the velocity and the field of a passive scalar. The differential operator of the closed system of the equations of turbulent transfer for the fields of the velocity and the concentration is found by a method of closure not of the parabolic type but of a weakly hyperbolic type [3]. An implicit difference scheme proposed in [4] is used for the numerical solution. The results of the numerical solution are compared with the experimental data of [5].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.