Abstract

Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted activation threshold for the considered precrash algorithm. The model analyzes past situations to calculate a driver-individual activation threshold that achieves a desired activation frequency. The advantage of the proposed model is that the distribution is estimated using a distribution model. This has the result that an activation threshold can be already determined using a small data set. In addition, the confidence interval that has to be considered is decreased. The proposed model was applied in a study with test subjects. Results of this paper confirm the usability of the model. In comparison with an empirical approach, the proposed model achieves a significantly lower threshold and, thus, a higher safety effect of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.