Abstract

We study how closely the optimal Bayes error rate can be approximately reached using a classification algorithm that computes a classifier by minimizing a convex upper bound of the classification error function. The measurement of closeness is characterized by the loss function used in the estimation. We show that such a classification scheme can be generally regarded as a (nonmaximum-likelihood) conditional in-class probability estimate, and we use this analysis to compare various convex loss functions that have appeared in the literature. Furthermore, the theoretical insight allows us to design good loss functions with desirable properties. Another aspect of our analysis is to demonstrate the consistency of certain classification methods using convex risk minimization. This study sheds light on the good performance of some recently proposed linear classification methods including boosting and support vector machines. It also shows their limitations and suggests possible improvements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.