Abstract
This study examined statistical methods to identify and quantify symptom clusters in diverse disciplines, discussed methodological issues in symptom cluster research in oncology, and provided guidance to researchers and clinicians as to the choice and conceptual implications of particular methods. Correlation and related measures of association show the mathematical evidence of a concurrent tendency for 2 or more symptoms. Graphical modeling reveals a more concrete image of possible symptom clusters and provides an idea as to how and why they are correlated. Structural equation modeling can be used to identify symptom clusters with a large number of symptoms, complex relationships, and/or directional relationships. Factor analysis can identify groups of symptoms which are interrelated due to a common underlying cause. Cluster analysis can group symptoms which have similar patterns across patients and find clinical subgroups based on symptom experience. The best strategy to study symptom clusters is to combine various methods while recognizing the strengths and limitations inherent in each method. A tight partnership of clinicians, clinical oncology researchers, and statisticians is essential. Designing a research to identify symptom clusters involves practical issues related to levels of measurement, dimensionality, confounding variables, symptom selection, and heuristic versus deterministic search.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.