Abstract
Anti-virus companies receive extensive quantities of malware variants daily; therefore, it is essential to automatically classify them into their corresponding malware family. Here, we apply an efficient statistical approach to identify and render critical malicious patterns into malware families, which are essential elements of automated classification of known and unknown malware variants in large quantities. Critical malicious patterns are the most frequent basic blocks, which are present most often in one specific malware family, and comparatively less in all other malware families. By computing the distribution frequency of each distinct basic block residing in all the malware families, the importance of being a potential representative of a critical malicious pattern for a specific malware family is measured. This value is carefully computed by considering the population of each malware family, and the distribution frequency ratio of every distinct basic block among the different malware families. The results show that known and unknown malware variants can be effectively and accurately classified into their related malware family using this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.