Abstract

Tunneling, transport of particles through classically forbidden regions, is a pure quantum phenomenon. It governs numerous phenomena ranging from single-molecule electronics to donor–acceptor transition reactions. The main problem is the absence of a universal method to compute tunneling time. This problem has been attacked in various ways in the literature. Here, in the present work, we show that a statistical approach to the problem, motivated by the imaginary nature of time in the forbidden regions, lead to a novel tunneling time formula which is real and subluminal (in contrast to various known time definitions implying superluminal tunneling). In addition to this, we show explicitly that the entropic time formula is in good agreement with the tunneling time measurements in laser-driven He ionization. Moreover, it sets an accurate range for long-range electron transfer reactions. The entropic time formula is general enough to extend to the photon and phonon tunneling phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call