Abstract

Microarrays are being increasingly used in cancer research for a better understanding of the molecular variations among tumours or other biological conditions. They allow for the measurement of tens of thousands of transcripts simultaneously in one single experiment. The problem of analysing these data sets becomes non-standard and represents a challenge for both statisticians and biologists, as the dimension of the feature space (the number of genes or transcripts) is much greater than the number of tissues. Therefore, the selection of marker genes among thousands to diagnose a cancer type is of crucial importance and can help clinicians to develop gene-expression-based diagnostic tests to guide therapy in cancer patients. In this chapter, we focus on the classification and the prediction of a sample given some carefully chosen gene expression profiles. We review some state-of-the-art machine learning approaches to perform gene selection: recursive feature elimination, nearest-shrunken centroids and random forests. We discuss the difficulties that can be encountered when dealing with microarray data, such as selection bias, multiclass and unbalanced problems. The three approaches are then applied and compared on a typical cancer gene expression study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.