Abstract

We analyze unidirectional and reciprocally connected pairs of neurons in the chemical connectomes of the male and hermaphrodite Caenorhabditis elegans, using recently published data. Our analysis reveals that reciprocal connections provide communication between most neurons with chemical synapses, and comprise on average more synapses than both unidirectional connections and the entire connectome. We further reveal that the C. elegans connectome is wired so that afferent connections onto neurons with large numbers of presynaptic neighbors (in-degree) comprise an above-average number of synapses (synaptic multiplicity). Notably, the larger the in-degree of a neuron the larger the synaptic multiplicity of its afferent connections. Finally, we show that the male forms two times fewer reciprocal connections between sex-shared neurons than the hermaphrodite, but a large number of reciprocal connections with male-specific neurons. These observations provide evidence for Hebbian structural plasticity in the C. elegans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.