Abstract

In this work we analyze the performance of the newly proposed digital tanlock loop in the presence of additive Gaussian noise. It is shown that the expected value of the steady-state phase errors at the input and the output of the phase error detector are equal to the noise-free steady-state values, while the variance is significantly reduced when the signal-to-noise ratio is increased or the phase shift (introduced by the time-delay) approaches 90-degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.