Abstract

The physical mechanism responsible for the dissipation of the solar wind turbulence and the resulting plasma heating is not completely understood. To be a viable means of dissipation, any mechanism has to reproduce several observational features of the turbulence spectra. One important characteristic of the spectrum is its high-frequency break, where the spectral slope becomes considerably steeper than the Kolmogorov-like scaling law observed in the inertial range. The onset of the spectral steepening can be inferred from the observations fairly accurately, and it is a good benchmark to test various theories of the turbulence dissipation. In this paper, a large database of magnetic field spectra and plasma parameters at 1 AU measured by the ACE spacecraft is used to determine the spectral break. The statistical correlation of the data points calculated according to existing theoretical formulae for the break is analyzed, and the least-squares fits to the data are compared with the theoretically predicted scalings. It is concluded that the position of the spectral break is not determined just by a scale of the turbulent fluctuations, but by a combination of their scale and the amplitude at that scale. This suggests that the dissipation of the solar wind turbulence is an essentially nonlinear process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.