Abstract

Hot Jupiters may have formed in situ, or been delivered to their observed short periods through one of two categories of migration mechanisms: disk migration or high-eccentricity migration. If hot Jupiters were delivered by high-eccentricity migration, we would expect to observe some “super-eccentric” Jupiters in the process of migrating. We update a prediction for the number of super-eccentric Jupiters we would expect to observe in the Kepler sample if all hot Jupiters migrated through high-eccentricity migration and estimate the true number observed by Kepler. We find that the observations fail to match the prediction from high-eccentricity migration with 94.3% confidence and show that high-eccentricity migration can account for at most ∼62% of the hot Jupiters discovered by Kepler.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.