Abstract
This work introduces a statistical analysis of knee range of motion (ROM) and surface electromyography (EMG) data gathered from a knee extension rehabilitation device. Real-time ROM and EMG signals of rehabilitation users are measured using a single angle sensor and a two-channel EMG device (for the vastus lateralis and vastus medialis muscles). These signals are collected by the NI-myRIO embedded device in accordance with the designed rehabilitation program. The main contribution and novelty of this study is that real-time signals are automatically processed and transformed into statistical data for use by users and medical experts. A solution for extracting raw signals is proposed, in which several statistical functions such as range, mean, standard deviation, skewness, percentiles, interquartile range, and total knee holding times above the threshold level, are implemented and applied. The proposed solution is tested using data acquired from healthy people, which includes gender, age, body size, knee side, exercise behavior, and surgical experience. Results indicated that real-time signals and related statistical data on the knee’s performance can be efficiently monitored. With this solution, rehabilitation users can practice and learn about their knee performance, while medical experts can evaluate the data and design the best rehabilitation program for users.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.