Abstract
The bidentate function of the thiocyanate anion was studied using the Cambridge Structural Database System. Complexing properties (metal–thiocyanate interactions) with respect to metal cations were analysed. Two main classes were distinguished: (a) alkali and alkaline earth metals, and (b) metals of Zn and Cu groups and transition metals (group VIII). Good correlations were found between the nature of the metal (radius, oxidation state and charge) and its position relative to the thiocyanate unit. Hydrogen-bond acceptor properties of discrete and complexed SCN units were compared. The extraordinarily active hydrogen-bonding behaviour allows this anion to act as a powerful bridge between different molecular fragments. In metal complexes the cation provokes a redistribution of anionic charge in SCN and the distribution of electron density, in turn, controls the hydrogen-bonding properties of the terminal acceptor atom. Binding properties of thiocyanate in biological systems were illustrated using the Brookhaven Protein Data Bank. A comparison of anion binding in small-molecule structures and in macromolecular structures shows good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section B Structural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.