Abstract
The paper presents a statistical analysis of neural network modeling and identification of nonlinear systems with memory. The nonlinear system model is comprised of a discrete-time linear filter H followed by a zero-memory nonlinear function g(.). The system is corrupted by input and output independent Gaussian noise. The neural network is used to identify and model the unknown linear filter H and the unknown nonlinearity g(.). The network architecture is composed of a linear adaptive filter and a two-layer nonlinear neural network (with an arbitrary number of neurons). The network is trained using the backpropagation algorithm. The paper studies the MSE surface and the stationary points of the adaptive system. Recursions are derived for the mean transient behavior of the adaptive filter coefficients and the neural network weights for slow learning. It is shown that the adaptive filter converges to a scaled version of the unknown filter H, and that the nonlinear neural network converges to an approximation of the unknown nonlinearity. Computer simulations show good agreement between theory and experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.