Abstract
In unsupervised learning literature, the study of clustering using microarray gene expression datasets has been extensively conducted with nonnegative matrix factorization (NMF), spectral clustering, kmeans, and gaussian mixture model (GMM)are some of the most used methods. However, there is still a limited number of works that utilize statistical analysis to measure the significances of performance differences between these methods. In this paper, statistical analysis of performance differences between ten NMF, six spectral clustering, four GMM, and the standard kmeans algorithms in clustering eleven publicly available microarray gene expression datasets with the number of clusters ranges from two to ten is presented. The experimental results show that statistically NMFs and kmeans have similar performances and outperform spectral clustering. As spectral clustering can be used to uncover hidden manifold structures, the underperformance of spectral methods leads us to question whether the datasets have manifold structures. Visual inspection using multidimensional scaling plots indicates that such structures do not exist. Moreover, as the plots indicate that clusters in some datasets have elliptical boundaries, GMM methods are also utilized. The experimental results show that GMM methods outperform the other methods to some degree, and thus imply that the datasets follow gaussian distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.