Abstract

Magnetic assisted finishing is one of the nontraditional methods of polishing that recently has been attractive for the researchers. This paper investigates the effects of some parameters such as rotational speed of the permanent magnetic pole, work gap between the permanent pole and the work piece, number of the cycles and the weight of the abrasive particles on aluminum surface plate finishing. The three levels full factorial method was used as the DOE technique (design of experiments) for studying the selected factors. Analysis of Variance (ANOVA) has been used to determine significant factors and also to obtain an equation based on data regression. Experimental results indicate that for a change in surface roughness ΔRa, number of cycles and working gap are found to be the most significant parameters followed by rotational speed and then weight of powders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.