Abstract

AbstractGeomagnetic storms can be modeled as stochastic processes with log-normal probability distribution function over their minimum Dst index value measured during the main phase of each event. Considering a time series of geomagnetic storm events between 1957 and 2019 we have analyzed the probability of occurrence of small, moderate, strong and extreme events. The data were separated according to solar cycle (SC) and solar cycle phases and fitted through maximum likelihood method in order to compare rates of occurrence of the last Solar Cycle (SC24) with previous ones. Our results show that for Dst < – 100 nT events in SC24 are similar to those in SC20, obtaining ⁓42 vs 21 median rate storms per cycle with 95% confidence intervals using Bootstrap Method. As SC24 has been the least active solar cycle in over 200 years, we conclude that this method tends to overestimate geomagnetic storms occurrence rates even for small events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.