Abstract
Many common human diseases and complex traits are highly heritable and influenced by multiple genetic and environmental factors. Although genome-wide association studies (GWAS) have successfully identified many disease-associated variants, these genetic variants explain only a small proportion of the heritability of most complex diseases. Genetic interactions (gene-gene and gene-environment) substantially contribute to complex traits and diseases and could be one of the main sources of the missing heritability. This paper provides an overview of the available statistical methods and related computer software for identifying genetic interactions in animal and plant experimental crosses and human genetic association studies. The main discussion falls under the three broad issues in statistical analysis of genetic interactions: the definition, detection and interpretation of genetic interactions. Recently developed methods based on modern techniques for high-dimensional data are reviewed, including penalized likelihood approaches and hierarchical models; the relationships between these methods are also discussed. I conclude this review by highlighting some areas of future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.