Abstract

AbstractA water harvesting system for research purposes has been established in the Lisan Peninsula of the Dead Sea in the middle of the Jordan Rift Valley, where no authorized guideline is available for designing water harvesting systems. Rainfall and runoff, which occurred as flash floods, were observed at the downstream end of a gorge with a 1.12 km2 barren catchment area from October 2014 through July 2019. Due to the extremely arid environment, runoff from the catchment is ephemeral, and the flash flood events can be clearly distinguishable from each other. Thirteen flash flood events with a total runoff volume of more than 100 m3 were successfully recorded during the five rainy seasons. Pearson and Spearman correlations between duration, total rainfall depths at two points, total runoff volume, maximum runoff discharge, bulk runoff coefficient, total variation in runoff discharge and maximum variation in runoff discharge of each flash flood event were examined, revealing no straightforward relationship between rainfall and runoff. The performance of the conventional SCS runoff curve number method was also deficient in reproducing any rainfall–runoff relationship. Therefore, probability distribution fitting was performed for each random variable, focusing on the lognormal distribution with three parameters and the generalized extreme value distribution. The maximum goodness‐of‐fit estimation turns out to be a more rational and efficient method in obtaining the parameter values of those probability distributions rather than the standard maximum likelihood estimation, which has known disadvantages. Results support the design of the water harvesting system and provide quantitative information for designing and operating similar systems in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call