Abstract

AbstractThis investigation presents results of the statistical and probabilistic analyses of 3,269 normal weight concrete cylinder compression tests used for recently constructed highway bridges in California. A new model for in-place strength of concrete structures is proposed as a function of the specified compressive strength, the normalized 28-day cylinder strength, and age of the structure based on a realistic strength–age relation for hardened concrete. The model prediction indicates that concretes in cast-in-place bridge structures designed with specified compressive strengths of 25 MPa (3.6 ksi), 28 MPa (4.0 ksi), and 35 MPa (5.0 ksi) reach their maximum strengths at about 40 years, with approximately 98% of the maximum strength occurring during the first 10 years. Also, through significance testing on the 28-day cylinder strengths, it was established that the California Department of Transportation practice of using an expected concrete strength instead of the specified strength for seismic desig...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.