Abstract

Based on the windowed Fourier transform, the windowed Fourier ridges (WFR) algorithm and the windowed Fourier filtering algorithm (WFF) have been developed and proven effective for fringe pattern analysis. The WFR algorithm is able to estimate local frequency and phase by assuming the phase distribution in a local area to be a quadratic polynomial. In this paper, a general and detailed statistical analysis is carried out for the WFR algorithm when an exponential phase field is disturbed by additive white Gaussian noise. Because of the bias introduced by the WFR algorithm for phase estimation, a phase compensation method is proposed for the WFR algorithm followed by statistical analysis. The mean squared errors are derived for both local frequency and phase estimates using a first-order perturbation technique. These mean square errors are compared with Cramer-Rao bounds, which shows that the WFR algorithm with phase compensation is a suboptimal estimator. The above theoretical analysis and comparison are verified by Monte Carlo simulations. Furthermore, the WFR algorithm is shown to be slightly better than the WFF algorithm for quadratic phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.