Abstract

One of the important issues in G-protein-coupled receptor (GPCR) functional analysis is the mechanism of GPCR-G-protein coupling selectivity. G-proteins are classified into Gi/o, Gq/11 and Gs families. Although several experimental and computational analyses have been attempted, the mechanism remains unknown to this day. In this study, we have analyzed the multiple sequence alignments of GPCRs of known coupling selectivities by mapping onto the tertiary structure of rhodopsin. We identified several functional residue sites in GPCRs related to coupling selectivity, which are located mainly at the intracellular loops, and found that the occurrence of positively/negatively charged amino acids of the characteristic residues varies depending on the G-protein coupling selectivity. Especially, the occurrence of positively charged amino acids in receptors coupling to Gs family is less than that in receptors coupling to Gi/o and Gq/11 families. It is interesting that some characteristic residues are located near the extracellular terminus of transmembrane helices, which is far from the GPCR/G-protein binding interface. In most of the receptors coupling to Gs family, the occurrence of proline on the position corresponding to the 170th residue on rhodopsin is rare. These findings are vital to improving our understanding of the mechanism of G-protein coupling selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call