Abstract

Many academic and industry research efforts are currently focused on evaluating the potentials of RFID technology for industrial applications. Major applications of RFID technologies are anticipated in warehouse and depot environments. One needs systematic methodologies for effective design and deployment of RFID systems in these environments. The authors present a statistically designed experimentation approach for determining the most desirable settings of an RFID system, deployable at vehicle ingress/egress points of a typical warehouse, depot or a manufacturing plant. The approach yields phenomenological insights into the joint effects of multiple RFID system parameters including read distance (i.e. separation between tag and a reader), speed and tag orientations on the performance of the ingress/egress monitoring system. Here performance is primarily specified in terms of readability of the tag, which is measured as the fraction of times a tag is read in a given environment. A statistical model is developed to capture the underlying relationships. The accuracy of the model is estimated to be above 78%, measured in terms of R values. The model also delineates the interaction effects of the distance and speed on read rate. Additionally insights into the design of RFID system based on this model have emerged from the present investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.