Abstract
We introduce a framework for proving lower bounds on computational problems over distributions against algorithms that can be implemented using access to astatistical queryoracle. For such algorithms, access to the input distribution is limited to obtaining an estimate of the expectation of any given function on a sample drawn randomly from the input distribution rather than directly accessing samples. Most natural algorithms of interest in theory and in practice, for example, moments-based methods, local search, standard iterative methods for convex optimization, MCMC, and simulated annealing, can be implemented in this framework. Our framework is based on, and generalizes, the statistical query model in learning theory [Kearns 1998].Our main application is a nearly optimal lower bound on the complexity ofanystatistical query algorithm for detecting planted bipartite clique distributions (or planted dense subgraph distributions) when the planted clique has sizeO(n1/2 − δ) for any constant δ > 0. The assumed hardness of variants of these problems has been used to prove hardness of several other problems and as a guarantee for security in cryptographic applications. Our lower bounds provide concrete evidence of hardness, thus supporting these assumptions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.