Abstract

Belt–pulley systems are widely used in the industry due to their high efficiency and their low cost. However, only few works exist about the monitoring of their degradation. This paper details the impact of belt looseness on electrical measurements under steady and transient state in order to identify spectral signatures. This analysis enlightens the advantage of the transient state to detect belt looseness because it exacerbates belt slip. An innovative methodology is then proposed based on the application of a square-wave speed reference in order to monitor belt looseness. A statistical-based indicator is defined from the phase currents in order to automatically detect drifting of the indicator. A normalization process is also applied to increase the detection robustness. The proposed indicator is evaluated on a 30-kW induction machine and a direct-current machine coupled with two trapezoidal belts for three speed and four load conditions. It reaches very good results with almost 90% correct detections for 1% false alarms. These results are way better than those obtained with a classic spectral analysis during the steady state. Moreover, results demonstrate that higher load conditions are more accurate for the monitoring of belt looseness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.