Abstract

AbstractThe cross correlation of ambient signal allows seismologists to collect data even in the absence of seismic events. “Seismic interferometry” shows that the cross correlation of simultaneous recordings of a random wavefield made at two locations is formally related to the impulse response between those locations. This idea has found many applications in seismology, as a growing number of dense seismic networks become available: cross‐correlating long seismic records, the Green's function between instrument pairs is “reconstructed” and used, just like the seismic recording of an explosion, in tomography, monitoring, etc. These applications have been accompanied by theoretical investigations of the relationship between noise cross correlation and the Green's function; numerous formulations of “ambient noise” theory have emerged, each based on different hypotheses and/or analytical approaches. The purpose of this study is to present most of those approaches together, providing a comprehensive overview of the theory. Understanding the specific hypotheses behind each Green's function recipe is critical to its correct application. Hoping to guide nonspecialists who approach ambient noise theory for the first time, we treat the simplest formulation (the stationary‐phase approximation applied to smooth unbounded media) in detail. We then move on to more general treatments, illustrating that the “stationary‐phase” and “reciprocity theorem” approaches lead to the same formulae when applied to the same scenario. We show that a formal cross correlation/Green's function relationship can be found in complex, bounded media and for nonuniform source distributions. We finally provide the bases for understanding how the Green's function is reconstructed in the presence of scattering obstacles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.