Abstract

Scroll rings are three-dimensional excitation waves rotating around one-dimensional filament loops. In experiments with the Belousov-Zhabotinsky reaction we show that the collapse of these loops can be stopped by local pinning to only two unexcitable heterogeneities. The resulting vortices rotate around stationary but curved filaments. The absence of filament motion can be explained by repulsive interaction that counteracts the expected curvature-induced motion. The shape and key dependencies of the stationary filaments are well described by a curvature-flow model with additive interaction velocities that rapidly decrease with filament distance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.