Abstract

Stable transport of high-concentrated solute is considered in horizontal boundary-layer flows above a wall of constant concentration. Mixing is accomplished by advection and molecular diffusion only. The utilized boundary-layer approximation allows to investigate the exclusive influence of gravity on vertical diffusion. The hydrodynamic dispersion mechanism was disregarded in the present study which confines its applicabilty to flows with small molecular Peclet numbers. A linear variability of both the fluid's density and viscosity with changing concentration is taken into account as well as the complete set of mass-fraction based balance equations. Steady-state concentration and velocity distributions above the horizontal wall have been obtained using the series truncation method which recently had proven successful to solve the corresponding problem using the Boussinesq assumption. The impact of the latter on these distributions is discussed by what has been additionally-facilitated by the existence of an exact analytical solution for the simpler Boussinesq case. Whereas no density variability influence exists with use of the Boussinesq assumption the complete system of mass-fraction based equations predicts opposing effects of density and viscosity differences between oncoming and near-wall fluids on concentration distributions. Larger density differences narrow the transition zone between both fluids, larger viscosity differences widen it. Thus, a compensation of both effects can be observed for individual fluids and for certain regions of the flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.