Abstract

We examine the separability properties of the equation of motion for a stationary string near a rotating charged black hole with two independent angular momenta in five-dimensional minimal gauged supergravity. It is known that the separability problem for the stationary string in a general stationary spacetime is reduced to that for the usual Hamilton-Jacobi equation for geodesics of its quotient space with one dimension fewer. Using this fact, we show that the ``effective metric'' of the quotient space does not allow the complete separability for the Hamilton-Jacobi equation, albeit such a separability occurs in the original spacetime of the black hole. We also show that only for two special cases of interest the Hamilton-Jacobi equation admits the complete separation of variables and therefore the integrability for the stationary string motion in the original background, namely, when the black hole has zero electric charge or it has an arbitrary electric charge but two equal angular momenta. We give the explicit expressions for the Killing tensors corresponding to these cases. However, for the general black hole spacetime the effective metric of the quotient space admits a conformal Killing tensor. We construct the explicit expression for this tensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.