Abstract
We consider a free boundary problem modeling the growth of angiogenesis tumor with inhibitor, in which the tumor aggressiveness is modeled by a parameter $μ$. The existences of radially symmetric stationary solution and symmetry-breaking stationary solution are established. In addition, it is proved that there exist a positive integer $m^{**}$ and a sequence of $μ_m$, such that for each $μ_m(m > m^{**})$, the symmetry-breaking stationary solution is a bifurcation branch of the radially symmetric stationary solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.