Abstract

We study the full Navier–Stokes–Fourier system governing the motion of a general viscous, heat-conducting, and compressible fluid subject to stochastic perturbation. The system is supplemented with non-homogeneous Neumann boundary conditions for the temperature and hence energetically open. We show that, in contrast with the energetically closed system, there exists a stationary solution. Our approach is based on new global-in-time estimates which rely on the non-homogeneous boundary conditions combined with estimates for the pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.