Abstract

The new process of ‘stationary shoulder’ friction stir welding (SSFSW) has been directly compared to conventional (friction stir welding) using welds produced in a high strength AA7050-T7651 aluminium aerospace alloy. The process window for each approach was first compared using torque–rotation rate decay curves. Under optimum process conditions, SSFSW had a ∼30% lower heat input than FSW and the stationary shoulder resulted in narrower welds with a reduced heat affected zone (HAZ) width. The SSFSW welds also had more uniform through thickness properties and performed better than conventional FSWs in cross-weld tensile tests. In addition it is demonstrated that the SSFSW process resulted in a far superior surface finish, although the stationary shoulder led to surface ‘speed cracking’ under certain welding conditions. The reasons for these benefits are discussed aided by thermal and hardness modelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.