Abstract

We study fluctuation effects of nonsteric molecular interactions between RNA polymerase (RNAP) motors that move simultaneously on the same DNA track during transcription elongation. Based on a stochastic model that allows for the exact analytical computation of the stationary distribution of RNAPs as a function of their density, interaction strength, nucleoside triphosphate concentration, and rate of pyrophosphate release we predict an almost geometric headway distribution of subsequent RNAP transcribing on the same DNA segment. The localization length which characterizes the decay of the headway distribution depends directly only the average density of RNAP and the interaction strength, but not on specific single-RNAP properties. Density correlations are predicted to decay exponentially with the distance (in units of DNA base pairs), with a correlation length that is significantly shorter than the localization length.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call