Abstract

A Fourier-series closure scheme is developed for the prediction of the stationary stochastic response of a stochastic parametrically and externally excited oscillator with a nonpolynomial type nonlinearity and under states constraint. The technique is implemented by deriving the moment relations and employing the Fourier series as the expansion of a non-Gaussian density for constructing and solving a set of algebraic equations with unknown Fourier coefficients. A single-arm robot manipulator operated in a constrained working space and subjected to parametric and/ or external noise excitations is selected to illustrate the present approach. The validity of the present scheme is further supported by some exact solutions and Monte Carlo simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call