Abstract

Nonlinear random vibration of the cables with small sag-to-span ratio and excited by in-plane transverse uniformly distributed Gaussian white noise is studied by a nonlinear multi-degree-of-freedom system which is formulated with Galerkin’s method. The stationary probabilistic solutions of the nonlinear system are analyzed with the state-space-split method in conjunction with the exponential polynomial closure method. Effectiveness of this approach about the cable random vibration is examined through comparison with Monte Carlo simulation and equivalent linearization method. The probabilistic solutions of the cable random vibrations are also studied by modeling the cable as single-degree-of-freedom system and multi-degree-of-freedom system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.