Abstract
We study a discrete model described by coupled excitable elements following the monostable FitzHugh-Nagumo equations. Our model has a weakly coupled activator and a strongly coupled inhibitor. For two-coupled excitable elements, we show that the trivial state always exists stably, while nontrivial stable states appear depending on the coupling strengths. In a one-dimensional array, only the elements near the initial condition step remain at nontrivial states. We discuss stationary pattern formation in a one-dimensional array and a two-dimensional lattice using the analytical results of a two-coupled system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.