Abstract

The purpose of this paper is to report on the convergence rates of two iterative matrix solution methods individually and then to combine the two methods into a hybrid scheme to achieve additional convergence rate benefits. One iterative matrix solver investigated is the sparse iterative method (SIM) which is a stationary, Jacobi-like solver but uses a sparse and not a banded matrix, with matrix elements corresponding to strong interactions, rather than position in the matrix. In this paper, the SIM is modified to include an adaptive relaxation scheme to improve its convergence speed and numerical stability. Another iterative scheme investigated is the nonstationary biconjugate gradient stabilized (BiCGSTAB) method. It is shown that the BiCGSTAB is considerably improved when the method is preconditioned by the sparse matrix used in the SIM method. Finally, a hybrid scheme is proposed which combines both SIM-AR and BiCGSTAB-precon and it is shown that the hybrid gives best results on the problems considered. Examples giving convergence time versus accuracy are presented for two problems: a wire-grid plate, and a wire-grid partial helicopter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.