Abstract
The nonlinear interaction of a high-frequency wave (transverse or longitudinal) and an ion-acoustic wave in a homogeneous plasma is investigated. The waves are assumed to be simultaneously excited by two localized external sinusoidal disturbances with frequencies ω0 and ωS in the plasma. From the coupled wave equations a system of ordinary differential equations for the spatial change of the amplitudes of the interacting waves (including the primary frequencies ω0, ωS and the mixed frequencies ω0±ωS) and a zero-frequency density disturbance is derived. The spatial development of the high-frequency amplitudes is characterized by localized regions of high intensities, coupled with local depressions of the plasma density. The influence of the initial amplitudes and the frequencies ω0, ωS on the maximum of the primary high-frequency amplitude and the ‘cavity’ depth is shown. The numerical results are compared with conclusions from a simplified model of three resonantly interacting normal modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.