Abstract
A generalized macroscopic Fick's first diffusion law is derived which describes steady-state particle flow between two baths explicitly as a function of the concentration gradient, acting as the thermodynamic driving force, times a functional of the first passage time. The latter is shown to be the ratio of the number of particles trapped between the baths and the first passage time. Particle trapping is shown to be a powerful mechanism by which flow can be enhanced. This is analyzed for two examples: a potential and an entropy trap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.