Abstract
Detecting trace amounts of explosives is important for maintaining national security due to the growing threat of terror attacks. Particularly challenging is the increasing use of homemade explosives. Therefore, there is a constant need to improve existing technologies for detecting trace amounts of explosives. This paper describes the design of a stationary device (a gate) for detecting trace amounts of explosives and explosive taggants and the design of differential ion mobility spectrometers with a focus on the gas system. Nitromethane (NM), trimeric acetone peroxide (TATP), hexamine peroxide (HMTD), and explosive taggants 2,3-dimethyl-2,3-dinitrobutane (DMDNB) and 4-nitrotoluene (4NT) were used in this study. Gate measurements were carried out by taking air from the hands, pocket area, and shoes of the tested person. Two differential ion mobility spectrometers operating in two different modes were used as explosive detectors: a mode with a semi-permeable membrane to detect explosives with high vapor pressures (such as TATP) and a mode without a semi-permeable membrane (using direct introduction of the sample into the measuring chamber) to detect explosives with low vapor pressures (such as HMTD). The device was able to detect trace amounts of selected explosives/explosive taggants in 5 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.